
Élus, heureux et collés !

INFORMATIQUE COMMUNE - Devoir no 2 - Olivier Reynet

Consignes :

1. utiliser une copie différente pour chaque partie du sujet,

2. écrire son nom sur chaque copie,

3. écrire de manière lisible et intelligible,

4. préparer une réponse au brouillon avant de la reporter sur la feuille.

R Les parties A,B et C sont indépendantes. Le langage Python est le seul langage informatique
autorisé dans les réponses. On s’appliquera à bien respecter les indentations. Il est souvent judiceux,
sauf mention contraire dans la question, d’utiliser les fonctions programmées dans les questions précé-
dentes. Les questions marquées Fsont plus difficiles.

A First To The Post

Dans le système électoral «First To The Post» (FTTP), est un mode de scrutin utilisé notamment par
le Royaume-Uni pour élire les membres du parlement. Les électeurs votent pour un candidat dans leur
circonscription. Le candidat ayant obtenu le plus de voix est déclaré vainqueur.

Chaque candidat possède un numéro, c’est-à-dire un entier. S’il y a n candidats dans une circons-
cription, alors les candidats sont numérotés de 0 à n −1.

Un scrutin FTTP est modélisé par une liste d’entiers dont chaque élément représente la voix d’un
électeur.

� Exemple 1 — Un scrutin FTTP. Supposons qu’il y a trois candidats pour un poste à pourvoir. Le
résultat d’un scrutin FTTP pourrait être [2, 2, 0, 1, 1, 0, 0, 1, 2, 1, 2, 1].

A1. Dans l’exemple 1, combien d’électeurs ont-ils voté?

A2. Écrire une fonction de signature suffrages_exprimes(scrutin: list[int])−> int qui renvoie le nombre
d’électeurs qui se sont exprimés lors de ce scrutin.

A3. Écrire une fonction de signature generer_alea_FTTP(n: int,m: int)−> list[int] qui renvoie une liste
d’entiers représentant un scrutin FTTP à n candidats et m électeurs qui s’expriment. Le choix du
candidat se fera aléatoirement en utilisant la fonction randrange du module random. On rappelle que
randrange(n) renvoie un entier aléatoire tiré uniformément entre 0 et n−1. Ne pas oublier d’importer
correctement la fonction.

A4. Écrire une fonction de signature decompter_candidat(scrutin: list[int], c: int)−> int qui renvoie
le nombre de voix qu’a obtenu le candidat c pour le scrutin. Par exemple, decompter_candidat([0, 2,

1, 2, 1, 2, 2, 0, 2, 2],2) renvoie 6.

1



INFORMATIQUE COMMUNE Devoir no 2

A5. Écrire une fonction de signature vmax(L) qui renvoie l’élément maximum d’une liste s’il existe, None
sinon. L’usage de la fonction max de Python n’est pas autorisé.

A6. Écrire une fonction de signature decompter(scrutin: list[int])−> list[int]) qui renvoie une liste
d’entiers représentant les résultats d’un scrutin FTTP. Par exemple, decompter([2, 2, 0, 1, 1, 0, 0,

1, 2, 1, 2, 1]) renvoie [3, 5, 4], ce qui signifie que le candidat 0 a obtenu 3 voix, le candidat 1
a obtenu 5 voix et que le candidat 2 a obtenu 4 voix. S’inspirer de vos connaissances sur le tri par
comptage.

A7. Écrire une fonction de signature vainqueur(scrutin: list[int])−> int qui renvoie le numéro du can-
didat vainqueur de l’élection. On tiendra compte de l’efficacité de la fonction : l’objectif est de n’ef-
fectuer qu’une seule fois le parcours de la liste scrutin. On supposera par ailleurs qu’il n’y a pas de
candidats exaequo et que le scrutin n’est pas une liste vide.

B Heureux

Un nombre est heureux si la fonction est_heureux décrite par l’algorithme 1 renvoie la valeur boo-
léenne vrai. L’objectif de cette partie est de coder cette fonction.

Algorithme 1 Vérifier si un nombre est heureux

Fonction EST_HEUREUX(n)
dejà_vu ←; . Ensemble des nombres déjà visités
tant que n 6= 1 répéter

si n ∈ dejà_vu alors
renvoyer faux . Le nombre n’est pas heureux

Ajouter n à dejà_vu
n ← SOMME_DES_CARRES_DES_CHIFFRES_DE(n)

renvoyer vrai . Le nombre est heureux

� Exemple 2 — 2008 est heureux. Appliquons l’algorithme 1 à 2008 :

• Prenons le nombre 2008.

• La somme des carrés de ses chiffres vaut 4+64, soit 68.

• La somme des carrés des chiffres de 68 vaut 36+64, soit 100.

• La somme des carrés des chiffres de 100 vaut 1, donc 2008 est un nombre heureux.

R Il existe une infinité de nombres heureux et le problème de savoir si un nombre est heureux est
décidable, c’est-à-dire on peut toujours répondre à cette question et on peut le démontrer.

B1. Écrire une fonction de signature inverser(L) qui renvoie une liste qui contient les mêmes éléments
que L mais dans l’ordre inverse. Par exemple, inverser([3,47,0, 12]) renvoie [12, 0, 47, 3]. L’usage
de la méthode L.reverse() n’est pas autorisé.

R Soit n un nombre écrit en base 10. Les divisions euclidiennes successives n de par 10
permettent de trouver la décomposition de n en base 10, c’est-à-dire la liste de ses chiffres.

Tant que le quotient de la division de n par 10 n’est pas nul, on recommence la division euclidienne

2 / 4



INFORMATIQUE COMMUNE Devoir no 2

en prenant le quotient comme dividende et 10 comme diviseur. Cet algorithme permet donc de
construire la liste des chiffres qui compose un nombre entier.

� Exemple 3 — Trois centaines, six dizaines et sept unités. Par exemple, prenons n = 367. On
a :

• 367 = 36×10+7, donc 7 est le chiffre des unités.

• 36 = 3×10+6, donc 6 est le chiffre des dizaines.

• 3 = 0×10+3, donc 3 est le chiffre des centaines.

B2. Écrire une fonction de signature decomposition_b10(n: int)−> list[int] qui renvoie la liste des chiffres
d’un nombre entier en base dix. Par exemple, decomposition_b10(2307) renvoie [2, 3, 0, 7].

B3. Écrire une fonction de signature somme_carres(n: int)−> int qui renvoie la somme des carrés des
chiffres qui compose le nombre entier n. Par exemple, somme_carres(203) renvoie 13.

B4. Le tri par insertion est composé de deux boucles dont l’une permet d’insérer à la bonne place un
élément dans une sous-liste bien ordonnée. En vous inspirant de cette boucle, écrire une fonction de
signature inserer(elem: int, L: list[int]) qui insère un élément elem dans une liste L bien ordonnée
dans l’ordre ascendant. Cette fonction travaille en place, directement sur la liste L, à laquelle on
ajoute donc un élément. Par exemple, si L est la liste [1,3,7,9], alors inserer(4,L) modifie la liste L en
[1, 3, 4, 7, 9].

B5. Écrire une fonction de signature rech_dicho(L: list[int], elem: int)−> bool qui renvoie True si elem
appartient à la liste L triée dans l’ordre ascendant, False sinon. Cette fonction utilise le principe de
la recherche par dichotomie.

B6. 7 est-il un nombre heureux?

B7. 42 est-il un nombre heureux?

B8. Écrire une fonction de signature est_heureux(n) qui implémente l’algorithme 1. La variable deja_vu

sera de type list[int]. On veillera à la maintenir triée en utilisant la fonction inserer dans le but
d’utiliser rech_dicho.

B9. FExpliquer ce que calcule la fonction mystère : que renvoie-t-elle? Comment procède-t-elle ?

1 def mystere(L):
2 if len(L) == 0:
3 return L
4 else:
5 return [L[−1]] + mystere(L[:−1])

B10. FÉcrire une fonction de signature decomposition_b10(n: int)−> list[int] récursive. On pourra uti-
liser la concaténation de listes +.

C Collés

L’objectif de cette partie est de modéliser le colloscope afin de le compléter automatiquement moyen-
nant certaines hypothèses simplificatrices.

Une classe de CPGE compte n groupes de colle. Le colloscope de la classe comporte n créneaux à
l’emploi du temps. Un semestre comporte n semaines de colles.

Un colloscope est modélisé par une liste de listes. Chaque sous-liste représente un créneau dans
l’emploi du temps et contient, dans l’ordre des semaines, les numéros des groupes collés. On suppose
qu’il y a toujours autant de groupes que de créneaux et on désignera ce nombre par n.

3 / 4



INFORMATIQUE COMMUNE Devoir no 2

C1. Écrire une fonction de signature colloscope_vide(n: int)−> list[list] qui renvoie un colloscope
vide comportant n sous-listes vides.

C2. Écrire une fonction de signature groupes_depart(n: int)−> list[int] qui génère la séquence des en-
tiers de 0 à n −1. Par exemple, groupes_depart(7) renvoie [0, 1, 2, 3, 4, 5, 6].

C3. Écrire une fonction de signature decalage(sequence: list[int])−> list[int] qui renvoie la permuta-
tion circulaire de la séquence passée en paramètre décalée d’un élément vers la gauche. Par exemple,
decalage([0, 1, 2, 3, 4, 5, 6]) renvoie [1, 2, 3, 4, 5, 6, 0].

C4. Écrire une fonction de signature colloscope(n: int)−> list[list[int]] qui renvoie un colloscope tel
que chaque créneau se voit attribuer un décalage différent de la séquence initiale des groupes. Par
exemple, colloscope(4) renvoie [[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 0, 1, 2]].

C5. FÉcrire une fonction de signature grouposcope(colloscope: list[list[int]])−> list[list[int]] qui
renvoie le grouposcope, c’est-à-dire la liste des listes des créneaux pour chaque groupe. Par exemple,
grouposcope(colloscope(4)) renvoie [[0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 2, 1, 0]].

On cherche maintenant à vérifier qu’un grouposcope est conforme avant d’en informer les étu-
diants. Un grouposcope est composé de sous-listes dont les tailles sont toutes les mêmes. Une sous-
liste d’un grouposcope vérifie de plus les propriétés suivantes :

• tous ses créneaux sont différents,

• ses créneaux sont numérotés de 0 à n −1 si n est la longueur de la liste.

C6. Écrire une fonction de signature memes_longueurs(g: list[list[int]])−> bool qui renvoie True si toutes
les sous-listes d’un grouposcope ont même longueur, False sinon.

C7. FÉcrire une fonction de signature tous_differents(sl: list[int])−> bool qui renvoie True si tous les
créneaux de colle sont différents pour une sous-liste sl d’un grouposcope, False sinon. On pourra
utiliser un tableau de booléen deja_vus pour mémoriser les éléments déjà rencontrés.

C8. FÉcrire une fonction de signature est_grouposcope(g: list[list[int]])−> bool qui renvoie True si g
est un grouposcope, c’est-à-dire s’il vérifie toutes les propriétés ci-dessus, et False sinon. On garan-
tira par une assertion que le grouposcope fourni en paramètre n’est pas vide.

4 / 4


	First To The Post
	Heureux
	Collés

